Low voltage ride through of doubly-fed induction generator connected to the grid using sliding mode control strategy
نویسندگان
چکیده
Wind Energy Conversion System (WECS) based on Doubly Fed Induction Generator (DFIG) connected to the grid is subjected to high transient currents at rotor side and rise in DC-link voltage during voltage sag at stator/grid side. To secure power system operation wind turbines have to meet grid requirements through the Low voltage ride through (LVRT) capability and contribute to grid voltage control during severe situations. This paper presents the modeling and control designs for WECS based on a real model of DFIG taking into account the effect of stator resistance. The non-linear control technique using sliding mode control (SMC) strategy is used to alter the dynamics of 1.5 MW wind turbine system connected to the grid under severe faults of grid voltage. The paper, also discusses the transient behavior and points out the performance limit for LVRT by using two protection circuits of an AC-crowbar and a DC-Chopper which follow a developed flowchart of system protection modes under fault which achieved LVRT requirements through results. The model has been implemented in MATLAB/SIMULINK for both rotor and grid side converters. © 2015 Elsevier Ltd. All rights reserved.
منابع مشابه
Low Voltage Ride Through Enhancement Based on Improved Direct Power Control of DFIG under Unbalanced and Harmonically Distorted Grid Voltage
In the conventional structure of the wind turbines along with the doubly-fed induction generator (DFIG), the stator is directly connected to the power grid. Therefore, voltage changes in the grid result in severe transient conditions in the stator and rotor. In cases where the changes are severe, the generator will be disconnected from the grid and consequently the grid stability will be attenu...
متن کاملSliding-Mode-based Improved Direct Active and Reactive Power Control of Doubly Fed Induction Generator under Unbalanced Grid Voltage Condition
This paper proposes an improved direct active and reactive power control (DPC) strategy for a grid-connected doubly fed induction generator (DFIG) based wind-turbine system under unbalanced grid voltage condition. The method produces required rotor voltage references based on the sliding mode control (SMC) approach in stationary reference frame, without the requirement of synchronous coordinate...
متن کاملLow Voltage Ride-Through Capability Improvement of Doubly Fed Induction Generator using DVR and SMES
Abstract: With the growth of communities and the increasing need for electricity, and because of the many benefits of renewable energy sources, the wind turbine has become a completely commercial and inevitable process, with increasing penetration into the electricity grid. Distribution networks, on the other hand, are subject to fault that cause power fluctuations and outflow of wind units. In...
متن کاملEfficient low-voltage ride-through nonlinear backstepping control strategy for PMSG-based wind turbine during the grid faults
This paper presents a new nonlinear backstepping controller for a direct-driven permanent magnet synchronous generator-based wind turbine, which is connected to the power system via back-to-back converters. The proposed controller deals with maximum power point tracking (MPPT) in normal condition and enhances the low-voltage ride-through (LVRT) capability in fault conditions. In this method, to...
متن کاملOptimal Operation of Doubly-fed Induction Generator used in a Grid-Connected Wind Power System
In this paper, a wind power system based on a doubly-fed induction generator (DFIG) is modeled and simulated. To guarantee high-performance control of the powers injected into the grid by the wind turbine, five intelligent super-twisting sliding mode controllers (STSMC) are used to eliminate the active power and current ripples of the DFIG. The STSMC controller is a high-order sliding mode cont...
متن کامل